7.5: Periodic and Piecewise Continuous Input Functions

Theorem 1. (Translation of the t-axis)
If $\mathcal{L}\{f(t)\}$ exists for $s>c$, then

$$
\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} F(s)
$$

and

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a)
$$

for $s>c+a$ where $u(t-a)=u_{a}(t)=\left\{\begin{array}{ll}0 & \text { if } t<a \\ 1 & \text { if } t \geq a\end{array}\right.$.
Example 1. Find $\mathcal{L}^{-1}\left\{\frac{e^{-a s}}{s^{3}}\right\}$.

Example 2. Find $\mathcal{L}\{g(t)\}$ if

$$
g(t)= \begin{cases}0 & \text { if } t<3 \\ t^{2} & \text { if } t \geq 3\end{cases}
$$

Example 3. Find $\mathcal{L}\{f(t)\}$ if

$$
f(t)= \begin{cases}\cos 2 t & \text { if } 0 \leq t<2 \pi \\ 0 & \text { if } t \geq 2 \pi\end{cases}
$$

Example 4. Consider the RLC circuit $R=110 \Omega, L=1 H, C=0.001 F$ and a battery supplying $E_{0}=90 \mathrm{~V}$. Initially there is no current in the circuit and no charge on the capacitor. At time $t=0$ the switch is closed and left closed for 1 second. At time $t=1$ it is opened and left open thereafter. Find the resulting current in the circuit if the equation is given by

$$
\frac{d i}{d t}+110 i+1000 q=e(t)
$$

Exercise 1. A mass that weighs 32 lb is attached to the free end of a long, light spring that is stretched 1 ft by a force of 4 lb . The mass is initially at rest in its equilibrium position. Beginning at time $t=0$ (seconds), an external force $f(t)=\cos 2 t$ is applied to the mass, but at time $t=2 \pi$ this force is turned off (abruptly discontinued) and the mass is allowed to continue its motion unimpeded. Find the resulting position function $x(t)$ of the mass is the resulting differential equation is

$$
x^{\prime \prime}+4 x=f(t) ; \quad x(0)=x^{\prime}(0)=0 .
$$

Theorem 2. (Transforms of Periodic Functions)
Let $f(t)$ be periodic with period p and piecewise continuous for $t \geq 0$. Then the transform $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>0$ and is given by

$$
F(s)=\frac{1}{1-e^{-p s}} \int_{0}^{p} e^{-} s t f(t) d t
$$

Example 5. Let $f(t)=(-1)^{\lceil t / a\rceil}$ be the square-wave function of period $p=2 a$. Find $\mathcal{L}\{f(t)\}$.

Example 6. Consider a mass-spring-dashpot system with $m=1, c=4$, and $k=20$ in appropriate units. Suppose that the system is initially at rest at equilibrium and that the mass is acted on beginning at time $t=0$ by the external force $f(t)$ which is the square wave function with amplitude 20 and period 2π. Find the position function $x(t)$ is the associated differential equation is

$$
x^{\prime \prime}+4 x^{\prime}+20 x=f(t) ; \quad x(0)=x^{\prime}(0)=0 .
$$

Homework. 1-29, 33-37 (odd)

